

Causes and Impact of Slipped/Misunderstood
Requirements on Large Scale Software Projects

 Muhammad Adeel Ashraf, MehwishAslam, Shahid M. Awan
Department of Computer Science, School of Systems and Technology,

University of Management and Technology
Lahore, Pakistan

Email: adeelashrafcs@gmail.com

Abstract— Requirement engineering is the first and foremost phase of a software development life cycle. Making mistakes during this
process has enormous negative impact on all underlying activities of software development. Defects discovered when a system is
deployed cost fifty to two hundred times more than defects discovered during software elicitation phase. In this research paper causes
of missed requirements have been identified by literature review and supported by interviews and surveys from leading software
industry professionals. In total, sixteen factors of missed requirements have been identified and divided into three categories namely;
User factors, Analyst factors, and Common Factors. Understanding of these factors will aid in developing softwares with complete
requirements and thus achieving customer satisfaction level and to avoid wastage of effort and poor quality software.

Keywords: missed requirements factors; survey report; interviews; statistical analysis

I. INTRODUCTION
 The communication initially starts with
customers/stakeholders for requirements gathering and this
process continues for the entire time during project
development, involving all the stakeholders. Communication
continues between all the project team (Requirement
engineers, software developers and tester). To make a
software project successful, beside the need of different tools
and techniques, effective communication plays a vital
role. Errors made during requirement gathering phase can be
responsible for 60% of the cost of the project, delayed
schedules and ultimately resulting in customer rejection for
software developed.

Past studies of requirement engineering emphasizes on
DIFFERENT REQUIREMENT ELICITATION WAYS WHICH ARE
MODELS, TOOLS and functions to identify the causes of weak
requirements. Purpose of this paper is to identify causes of
poor requirements and effects of these requirements on the
project quality.

Software with incomplete requirements is always
undesirable by customer. Efficient requirement engineering
plays a vital role. Understanding the impacts of missed
requirements due to poor requirement engineering is essential
to minimize the risk of missed requirements. Poor quality
requirements result in failure to meet customer expectations,
poor quality software and wastage of time and efforts. A high
understanding of all the possible factors affecting requirement
gathering is important to deliver complete, desired and
efficient software. We can maximize the software efficiency
by closing all the requirement elicitation holes and thus
delivering software that fulfills all the needs and expectations
of customer.

Misunderstood requirements by developers and users
always result in ‘Misunderstood or skipped requirements’.
Finding these causes of missed requirements and avoiding
these during requirement elicitation phase can improve the
quality of software.

The main purpose of this study was to find realistic ways to
bridge the gap between user and developer to create improved
requirement elicitation process. By doing so customer
satisfaction level could be increased and project cost could be
decreased [9].

II. RELATED WORK
Major studies to understand software development life cycle

suggest that the proper communication between customers,
development engineers and requirement engineers is an
essential part of correct understanding of the requirements [3].
But there is a problem in large organizations because large
organizations hide some business critical information which is
essentially important for software requirements. It was also
noted that the proper communication cannot be fulfilled
through documentation. Interaction and communication with
different people plays an important role in requirement
engineering.

Designing of large software system problem were studied
by conducting interview through a team assigning different
projects almost seventeen. For this purpose a model is used to
find and analyze the problem which is called behavioral
model. Different type of flaws were observed like knowledge
about domain is very thin and communication gaps between
customers, development engineers and requirement engineers.
He also observed the pros and cons on software developments
and quality through these gaps. This activity is observed
conducting an interview of different positions at managerial
level [3].

Communication has also been reported challenging for
distributed software projects. In this field the efforts of
Holmstrom et al, Kotlarsky and Oshri, Piri are significant [4].
Holmstrom et al. point out temporal space as tough in
everyday communication in universal software development
environment. Additionally, even in general software
development projects where agile methods were used
communication have also been noted as challenging. On the
other hand, Kotlarsky and Oshri reported that challenges

included in sharing knowledge across internationally
distributed teams are still common [4]. Finally, Piri reports
that many of the common problems meet in software
development projects can be drawback to social factors of the
project with special challenges to communicate among
dispersed teams [5].

Al-Ani and Edwards worked on communication models [1].
Lutz worked on linguistic challenges [6]. Niinimaki et al's
report on finding communication tools in twelve distributed
software projects is mentionable [7]. The relations between
individuals with different people in cross-functional
developing teams have been calculated and the many of absent
communication boundaries was found between people
performing different roles that were not supposed to be
communicating according to the formal organizational
structure.

III. RESEARCH METHODOLOGY
Quantitative research approach has been used for finding

and verification of missed requirements causes, which is
suitable when individual thinking of a complex problem is to
be studied, using interview methodology. The research has
been carried out in three stages, described as follows.

A. Literature Review and Hypothesis Generation
To find the causes of missed requirements we chose to

study the literature provided by authors [1] which is used as
input in identifying the ‘assumed’ factors involved in poor
requirement elicitation process and hypothesis generation. To
avoid biased thinking in selecting causes of missed
requirements described by only one author, the process of
selecting assumed factors have been justified by extensive
study of literature review provided by other authors as well
and brainstorming sessions with hypothesis by authors this
paper. Outcome of literature review has been used as input for
conducting interviews with analysts of software elicitation
process and designing the questionnaire, which is used to
validate the factors selected for missed requirements causes by
literature review and interviews [8][10][12][13][14].

Following assumed factors of missed requirements have
been identified by literature review activities which are further
divided into three categories. User factors [UF], Analyst
factors [AF], Common factors between user and analyst [CF].

A.1 User Factors Responsible for Missed Requirements [UF]
Following factors have been identified as cause of poor

requirement elicitation process contributed by User.

A.1.1 User with incomplete understanding of his needs [UF1]
Most of the times customers are not clear about what

exactly they want and thus unable to convey what exactly to
built. This also happens if requirements are gathered from
high level management of organization who can only give
high level abstract information of the system.

A.1.2 Poor/Over Customer Involvement [UF2]
Sufficient customer involvement during software

requirement elicitation process is very necessary as the
customer is important element to provide requirements to
analysts. Poor customer involvement in elicitation process

leads to unclear and unrealistic requirements Most of the time
users believe that analysts already know what is required by
users and thus unintentionally hide major aspects of
requirements which contribute to missed requirements and
development of a product which was not desired by user. Over
involvement of user into software elicitation process makes
this process tiresome and confusing for analysts too.

A.1.3 Conflicting views of stakeholders [UF3]
Different stakeholders have different priorities for the

system to be developed and thus they convey requirements
according to these priorities. It also involves political
environment of an organization.

A.2 Analyst Factors Responsible for Missed Requirement [AF]
Following factors have been identified as cause of poor

requirement elicitation process contributed by requirement
engineer/analyst.

A.2.1 Missed Requirements [AF1]
Missed requirements are disastrous for a software project.

Software with complete needs of user cannot be developed
with missed requirements. Identifying requirements later in
product lifecycle causes wastage of resources. Complete
requirements support the developer of software which is up to
the mark of customer expectations.

A.2.2 Poor Quality Requirements (incomplete, inconsistent,
inaccurate) [AF2]

Poor quality requirements involve incomplete, inconsistent
or inaccurate requirements. A requirement taken with these
attributes is of no use. Requirements should be complete,
consistent and accurate to be considered as quality
requirements [10].

A.2.3 Fuzzy and Ambiguous Requirements [AF3]
Fuzzy or ambiguous requirement are unhealthy for

software. A product is facing ambiguity problem if a
requirement mentioned in a document have several meanings
and different readers interpret a requirement in different ways
[8].

A.2.4 Uncertainty over Requirements [AF4]
Uncertainty problem over requirements occur when

expectations level of different stakeholders (executives,
developers) from the product is different. Secondly this
problem occurs when requirements are given by users but
analysts are really not sure about what to develop. Normally it
happens when requirement discussions are mainly focusing
functionality part of the product and as a result some
expectations of the stakeholders are left unmentioned.

A.2.5 Unprioritized Requirements [AF5]
Requirements are to be prioritized according to their

importance for the system. Prioritizing requirements helps
product managers in activities like staff allocation, scheduling
of resources and trade off between requirements [8][10].

A.2.6 Untrained Analyst [AF6]
Requirements can’t be fully and efficiently gathered if

requirement engineer is not fully trained. A requirement

engineer is responsible for capturing a big picture, understand
it and describe it. He is also responsible for communicating
with non-technical people as well as technical people which
requires a training regarding software requirement
engineering.

A.2.7 Unnecessary Requirements/Gold Platted
Requirements/Scope Problem [AF7]

Scope sneak mostly happens when the product scope is not
clearly defined. If new requirements sneaks in or sneak out,
product scope definition becomes questionable. At times
unnecessary gold platting to requirements is done by analysts
causing wastage of time and resources and indulging with
unnecessary requirements [14].

A.2.8 Poor Change Process Planning and Effect Analysis
[AF8]

A project must have a defined process for dealing change in
requirements otherwise a new functionality will be shown
only in testing phase which is too late. Developers might
implement changes which are already rejected or implement
changes which are yet to be approved. The authority for
change control must be well defined and changes must be
communicated to all people getting affected. Effect of the
change must be analyzed. The change can make the product
more complex, effect schedule, technically infeasible or it can
make a product over budgeted [8].

A.2.9 Version Control of SRS [AF9]
Version control of SRS plays an important role in efficient

software development. A developer can implement a
functionality which was removed from new SRS because the
developer was not given an updated version of SRS. Testers
can test the software against removed functionality of the
product [8].

A.2.10 Inadequate Requirement Tool Support [AF10]
Adequate tool support is not used by many requirement

engineers. Many times it happens that only SRS is used as
requirement repository. Few analysts use requirement
management tools like Borland CAliberRM, Telelogic’s
DOORS. Diagrams are major part of requirement engineering
and this diagram gives a clear picture of requirements along
with their attributes and develops a clear understanding
throughout the project life [8].

A.3 Common Factors (user and analyst) Responsible for
Missed Requirements [CF]

Following factors have been identified as cause of poor
requirement elicitation process contributed by both user and
analyst.

A.3.1 Language Barrier between User and Analyst [CF1]
Sometimes it happens that requirement engineering team

and stakeholders are from different backgrounds and speak
different language or variation in same language and thus
unable to understand each other’s product expectations fully.

A.3.2 tiptoe requirements/changing requirements [CF2]
A critical problem in requirement engineering occurs when

requirements keep on changing even after requirements are

finalized and development is started.

A.3.3 Inadequate Requirement Validation by Stakeholders
[CF3]

A major task of analyst is to get the requirements validated
by stakeholders in order to a get the requirements clearly
specified and agreed by stakeholders. This problem can be
occurred in two ways. One way is if stakeholders are not
accessible and analysts don’t have adequate access to
stakeholders. Second way is if software requirement team
doesn’t perform all the requirement tasks and thus eliminating
requirement validation by stakeholders which may be due to
product schedule or project budget [8].

B. Interview with 12 Software industry persons
Semi structured Interviews were conducted with 12

experienced software engineers from software industry.
Hypothesis, based on 16 assumed factors for missed software
requirements was discussed with them and requested to add
any other factor that they feel is responsible for missed
requirements with the help of their software industry
experience but not a single additional factor could be
generated by interviews.

B. Survey by questionnaire
Hypothesis of 16 assumed factors of missed requirements

was presented 40 software industry persons via questionnaire
[appendix A] to get the degree of agreement with the
hypothesis. The degrees like experienced, strongly agree,
partly agree, disagree were presented against each of 16
assumed factors and their opinion was gathered and
statistically analyzed [11].

IV. SURVEY RESULTS
Following results have been found from survey of 40

respondents of software industry. The percentage of degree of
agreement against each factor is shown in the Table I.

TABLE I. SURVEY RESULTS

Survey Results Experienced Agreed Partially
Agreed

1:User with incomplete
understanding of his
needs

80% 20% 0%

2:Poor/Over involvement
of user

50% 50% 0%

3:Conflicting views of
stakeholders

40% 50% 10%

4:Missed requirements by
requirement
engineer(analyst)

30% 60% 10%

5:Poor quality
requirement(incomplete,
inconsistent)

50% 50% 0%

6:Fuzzy and ambiguous
requirements

40% 60% 0%

7:uncertainity over
requirements

50% 50% 0%

8:unprioritized
requirements

30% 60% 10%

9:untrained analyst 20% 50% 30%

10:Scope problem/gold
platted requirements

60% 40% 0%

11:poor change control of
requirements

20% 60% 20%

12: version control of
SRS

20% 40% 40%

13: inadequate
requirement tool support

30% 50% 20%

14:Language barrier
between user and analyst

30% 40% 30%

15:changing requirements 70% 20% 10%

16:inadequate
requirement validation by
stakeholders

30% 50% 20%

This form is also online and the link is given in link [11].

Top three causes of missed software requirements analyzed
by survey result are as follows: User with incomplete
understanding of his need, Changing requirements, and Scope
problems.

Fig. 1. Percentage of top three factors analyzed by survey results.

V. ANALYSIS OF RESULT AND RECOMMENDATIONS
Recommendations are for each factor as numbered in Table 1.

R1: Most of the time the customer assumes that he/she has
fully described the system and has given all the inputs
required for the system to be developed but in reality this is
not the case. Analyst should gather requirements of large
software systems not only by interviewing the customer but
also some other methods of requirements elicitation should be
used. Ideally the requirements should be gathered by end users
of the system although the vision of organization perceived by
top executives of organization should be considered too.

R2: Requirement elicitation is a collaborative process
between user and analyst. Active participation of user is
necessary in this process to get the maximum output of
requirement gathering activity. Over involvement of user
should also be discouraged because it can make this whole
process confused and tiresome for analysts.

R3: Finding out the real stakeholder of the system is a
difficult but important task. Project started by one stake holder
can be cancelled by another so examining the real stakeholder
who has the final authority regarding the project is really
essential. Internal conflicts should not have impact on

requirement elicitation process.
R4: Missed requirements are much difficult to point out as

compared to poorly specified requirements. Missed
requirement problem usually cannot be spotted until the
system is developed or deployed. Analyst must gather
requirement carefully in spite of fully depend on stakeholders
or users. Elicitation process must involve all possible
stakeholders and requirement engineering team members so
that this process to be carried out efficiently. Methods and
techniques like use case modeling and swim lane diagrams
must be made with all preconditions and post conditions.

R5: Gathering quality requirements is a difficult task and
for this purpose not only analysts but reviewers and inspectors
should be trained. They should be able to differentiate
between good and poor requirements. Reviews to ensure
quality requirements are necessary. Engage members of
design and test teams to ensure feasible and verifiable
requirements.

R6: Analysts should review and inspect all requirements to
verify and ensure that none of the requirements is fuzzy or
ambiguous. Each requirement should be checked against a
checklist of most common ambiguity defects. Tools should be
used to filter out any vague words used in requirement
document.

R7: Business, user and functional requirement should be
dealt separately. All of them should be considered important
to eliminate the uncertainty factor.

R8: setting a priority level for each functional requirement
is an important attribute. Implementation of truly essential
functionality is carried out by deriving functional requirements
from use case description. Allocating each requirement to a
particular build is the key.

R9: Characteristics of good requirement engineer are
trained, experienced, motivated, communication skill and
domain knowledge. Analysts should be properly trained to
gather good quality requirements which can be done by
classes, workshops, tutorial, books and by giving them chance
to work with more experienced people.

R10: A full stop can never be marked against requirements
as requirements keep on adding and enlarging the scope of the
project. Use of modern lifecycle to allow addition of
requirements can be a good choice to handle scope problems.

R11: Change control process must be defined for your
project. A change control process must be supplemented
change tracking tool. However, remember that a tool is not a
substitute for a process. Set up a change control process to
consider proposed changes at regular intervals and make
decisions to accept or ignore them.

R12: If versions of SRS are not fully updated it may cause
development of invalid requirements. Each change should be
updated in SRS and latest version of SRS should be
distributed to developers and testers.

R13: A powerful requirement management tool for storing
metadata of requirements is very important. It enables analyst
to keep record of requirements with the help of diagrams to
have a clear picture of requirements. With the help of tools
forward and reverse requirement engineering can be achieved.
Traceability is done easily with these tools.

R14: Language should not be a barrier between analyst and
user. The analyst must be of same lingual background to

0
10
20
30
40
50
60
70
80
90

User	with	
incomplete	

understaning	of	his	
needs

Changing	
requirements

scope	problems

Top	3	factors	responsible	for	missed	
requirements

efficiently understand customer needs.
R15: The idea of freezing the requirement at specific

milestones is worth trying but frozen requirements should be
placed under configuration control and all the impact of
change needs to be determined before the changes are decided
to take place. A close eye should be on budgets and schedules
incase of changing requirements.

R16: Analyst should make sure that requirements are
validated by stakeholders to ensure that all requirements are
correctly specified and up to their demands. Requirement
validation by stakeholders should be a functional part of
project’s schedule and budget.

VI. CONCLUSION
Quality software path begins with good requirement

engineering process. For requirement to be of good quality, an
efficient requirement engineering process is needed. An
efficient requirement elicitation process can be achieved by
educating all stakeholders including user’s manager’s
requirement team members about requirement engineering
process and application domain. There should be collaboration
between customer and developer for requirement elicitation
and management. All the requirements should be classified
and divided in appropriate categories. An iterative and
incremental approach should be used for requirement
engineering process and standard template should be used for
SRS. Vision and scope of organization should be kept in mind
while developing software. Formal and in formal reviews of
requirement document is very essential. Test cases for
requirements and prioritization of requirements is necessary.
All the changes must be incorporated efficiently. Keeping all
these guidelines can ensure good quality software.

VII. FUTURE RESEARCH DIRECTIONS
Future work includes investigating additional factors causing
missed software requirements and their impacts on software
requirements elicitation process and quality of the product to
be developed and relationship between these factors.

ACKNOWLEDGMENT	
We would like to thank all our interviewees and

questionnaire respondents from software industry who
contributed to the fulfillment of this research project.

REFERENCES	
[1] B. Al-Ani, H. K. Edwards, "A Comparative Empirical Study of

Communication in Distributed and Collocated Development Teams.”
Proc. IEEE Int. Conference on Global Software Engineering (ICGSE
'08). IEEE Computer Society, pp. 35-44. doi: 10.1109/ICGSE.2008.9.

[2] A. J. Coffey and P. A. Atkinson, “Making Sense of Qualitative Data:
Complementary Research Strategies”, Sage Publications, Inc, 1996.

[3] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software
design process for large systems.” Commun. ACM, vol. Nov. 1988, pp.
1268-1287, doi:10.1145/50087.50089.

[4] J. Kotlarsky and I. Oshri. “Social ties, knowledge sharing and
successful collaboration in globally distributed system development
projects.” Eur Journal of Inf Systems, vol. 14, Mar. 2005, pp. 37-48,
doi: 10.1057/palgrave.ejis.3000520.

[5] A. Piri, "Challenges of Globally Distributed Software Development -
Analysis of Problems Related to Social Processes and Group Relations",

Proc IEEE Int Conf on Global Software Engineering, Sep. 2008,pp. 264-
268, doi: 10.1109/ICGSE.2008.33.

[6] B. Lutz, "Linguistic Challenges in Global Software Development:
Lessons Learned in an Int. SW Development Division,", Proc. Int. Conf.
on Global Software Engineering, Jul. 2009, pp. 249-253, doi:
10.1109/ICGSE.2009.33

[7] T. Niinimaki, A. Piri, C. Lassenius and M. Paasivaara, "Reflecting the
Choice and Usage of Communication Tools in GSD Projects with Media
Synchronicity Theory" Proc. IEEE Int. Conf. on Global Software
Engineering, Sep. 2010, pp. 312, doi: 10.1109/ICGSE.2010.11

[8] Karl Wiegers and Joy Beatty. “Software Requirements Engineering”,
2nd Edition.

[9] E. Bjarnason, K. Wnuk and B. Regnell, "Requirements are slipping
through the gaps — A case study on causes & effects of communication
gaps in large-scale software development," 2011 IEEE 19th
International Requirements Engineering Conference, Trento, 2011, pp.
37-46.

[10] Firesmith, Donald. "Prioritizing Requirements." Journal of Object
Technology 3.8 (2004): 35-48.

[11] https://docs.google.com/a/umt.edu.pk/forms/d/1JYA0U73hx8ZASOfsZ0
-5PInVSfSz609xyskx_1MP-9c

[12] Pohl, Klaus “Requirements EngineeringFundamentals, Principles, and
Techniques” 3rd Edition.

[13] ElizebethBjarnason“Challenges and Practices in aligning requirements
with verification and validation”.

[14] ElizebethBjarnason“Causes and effects of over scoping in large scale
software projects”.

